Under review as a conference paper at ICLR 2025

GEOMETRIC NEURAL PROCESS FIELDS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper focuses on Implicit Neural Representation (INR) generalization, where
models need to efficiently adapt to new signals with few observations. Specifi-
cally, for radiance field generalization, we propose Geometric Neural Processes
(GeomNP) for probabilistic neural radiance fields to explicitly capture uncertainty.
We formulate INR generalization in a probabilistic manner, which incorporates
uncertainty and directly infers the INR function distributions on limited context
observations. To alleviate the information misalignment between the 2D context
image and 3D discrete points in INR generalization, we introduce a set of geometric
bases. The geometric bases learn to provide 3D structure information for inferring
the INR function distributions. Based on the geometric bases, we model GeomNP
with hierarchical latent variables. The latent variables integrate 3D information
and modulate INR functions in different spatial levels, leading to better general-
ization of new scenes. Despite being designed for 3D tasks, the proposed method
can seamlessly apply to 2D INR generalization problems. Experiments on novel
view synthesis of 3D ShapeNet and DTU scenes, as well as 2D image regression,
demonstrate the effectiveness of our method.

1 INTRODUCTION

Implicit Neural Representations (INRs) (Sitzmann et al., 2020b; Tancik et al., 2020) have recently
gained popularity for their ability to learn continuous, compact, and efficient representations of
continuous signals, especially for 3D settings (Park et al., 2019; Mildenhall et al., 2021; Mescheder
etal., 2019; Chen et al., 2022). Building on INRs, neural radiance fields (NeRFs) (Mildenhall et al.,
2021; Barron et al., 2021) model 3D scene representation as a mapping from 3D coordinates and
view directions to color and density values. By integrating these values along camera rays, NeRFs
can render photorealistic images of scenes from novel viewpoints. Although NeRFs achieve good
reconstruction performance, they must be overfitted to each 3D object or scene, resulting in poor
generalization to new 3D scenes with few context images.

In this paper, we focus on radiance field generalization and fast adaptation of the INR function for
novel 3D scenes using only a few context image views. Previous works on INR generalization have
approached the problem by gradient-based meta-learning (Tancik et al., 2021) to adapt to new scenes
with a few optimization steps (Tancik et al., 2021; Papa et al., 2024), modulating shared MLPs
through HyperNets (Chen & Wang, 2022; Mehta et al., 2021; Dupont et al., 2022a; Kim et al., 2023),
or directly predicting the parameters of scene-specific MLPs (Dupont et al., 2021; Erkog et al., 2023).
However, the deterministic nature of these methods cannot account for the uncertainty of scenes or
INR functions when only few partial observations are available. This is unrealistic since there can be
different interpretations of limited observations.

To account for uncertainty induced by few available context images, probabilistic INR functions for
NeRF (Gu et al., 2023; Guo et al., 2023; Kosiorek et al., 2021) have also been recently explored.
VNP (Guo et al., 2023) and PONP (Gu et al., 2023) infer the INR function using Neural Processes
(NPs) (Bruinsma et al., 2023; Garnelo et al., 2018b; Wang & Van Hoof, 2020; Shen et al., 2024), a
probabilistic meta-learning method that models functional distributions conditioned on partial signal
observations. These probabilistic methods, however, only approximate the INR functions in 3D space,
neglecting the interaction between 3D functions and 2D observations. Since the radiance fields model
relationships in 3D space, while the only available context observations are 2D images, there is an
information misalignment between contexts and functions in radiance field generalization.
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To efficiently adapt to new signals with few observations, we propose probabilistic radiance field
generalization with Geometric Neural Processes (GeomNP). Our contributions can be summarized as
follows: 1) Probabilistic NeRF generalization framework. We cast radiance field generalization as a
probabilistic modeling problem. By doing so, we can amortize the probabilistic model over multiple
objects with few views, facilitating the learning and generalization of NeRF functions. 2) Geometric
bases. To eliminate the potential information misalignment, we design geometric bases by encoding
observations in 2D space with 3D prior structures. Thus, the geometric bases can aggregate locality
information to each 3D point, improving the exploration of high-frequency details. 3) Geometric
neural processes with hierarchical latent variables. Based on the geometric bases, we develop
geometric neural processes to capture the uncertainty in the latent NeRF function space. Specifically,
we introduce hierarchical latent variables to modulate the INR function at multiple spatial levels,
yielding better generalization on new scenes and new views. Experiments on novel view synthesis of
ShapeNet objects and real-world DTU scenes demonstrate the effectiveness of the proposed method
on 3D radiance field generalization. Nevertheless, the proposed method can seamlessly apply to INR
generalization in 2D signals (images).

2 RELATED WORK

Implicit Neural Representations. Implicit neural representations (INRs) parameterize a continuous
function from the coordinate space to arbitrary signals, offering a flexible and compact continuous
data representation (Sitzmann et al., 2020b; Tancik et al., 2020). Due to their continuous nature, INRs
have been widely used to represent 3D objects and scenes (Chen & Zhang, 2019; Park et al., 2019;
Mescheder et al., 2019; Genova et al., 2020; Niemeyer & Geiger, 2021). NeRF (Mildenhall et al.,
2021) utilizes neural radiance fields for view synthesis, mapping spatial coordinates to corresponding
colors and densities, and optimizing scene representation from 2D view images using differentiable
volumetric rendering. Mip-NeRF (Barron et al., 2021) incorporates multiscale representation. Ten-
soRF (Chen et al., 2022) enhances NeRF by factorizing the 4D scene tensor into multiple compact
low-rank tensor components based on matrix decompositions. NeuRBF (Chen et al., 2023b) employs
radial basis functions (RBF) to aggregate local neural features in the space. FactorField (Chen
et al., 2023a) decomposes a signal into a product of factors. These methods aggregate local neural
information using various pre-defined structured information, while we infer geometric bases spanned
in space to encode the structure information.

INR Generalization. Many previous methods attempt to use meta-learning to achieve INR gen-
eralization. Specifically, gradient-based meta-learning algorithms such as Model-Agnostic Meta
Learning (MAML) (Finn et al., 2017) and Reptile (Nichol et al., 2018) have been used to adapt
INRs to unseen data samples in a few gradient steps (Lee et al., 2021; Sitzmann et al., 2020a; Tancik
et al., 2021). Another line of work uses HyperNet (Ha et al., 2016) to predict modulation vectors
for each data instance, scaling and shifting the activations in all layers of the shared MLP (Mehta
et al., 2021; Dupont et al., 2022a;b). Some methods use HyperNet to predict the weight matrix of
INR functions (Dupont et al., 2021; Zhang et al., 2023). Transformers (Vaswani et al., 2017) have
also been used as hypernetworks to predict column vectors in the weight matrix of MLP layers (Chen
& Wang, 2022; Dupont et al., 2022b). In addition, Reizenstein et al. (2021); Wang et al. (2022) use
transformers specifically for NeRF. Such methods are deterministic and do not consider the uncer-
tainty of a scene when only partially observed. Other approaches model NeRF from a probabilistic
perspective (Kosiorek et al., 2021; Hoffman et al., 2023; Dupont et al., 2021; Moreno et al., 2023;
Erkoc et al., 2023). For instance, NeRF-VAE (Kosiorek et al., 2021) learns a distribution over radiance
fields using latent scene representations based on VAE (Kingma & Welling, 2013) with amortized
inference. Normalizing flow (Winkler et al., 2019) has also been used with variational inference
to quantify uncertainty in NeRF representations (Shen et al., 2022; Wei et al., 2023). However,
these methods do not consider structural information and the information misalignment between 2D
observations and 3D NeRF functions, which our approach explicitly models.

Neural Processes. Neural Processes (NPs) (Garnelo et al., 2018b) is a meta-learning framework
that characterizes distributions over functions, enabling probabilistic inference, rapid adaptation
to novel observations, and the capability to estimate uncertainties. This framework is divided
into two classes of research. The first one concentrates on the marginal distribution of latent
variables (Garnelo et al., 2018b), whereas the second targets the conditional distributions of functions
given a set of observations (Garnelo et al., 2018a; Gordon et al., 2019). Typically, MLP is employed
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in Neural Processes methods. To improve this, Attentive Neural Processes (ANP) (Kim et al.,
2019) integrate the attention mechanism to improve the representation of individual context points.
Similarly, Transformer Neural Processes (TNP) (Nguyen & Grover, 2022) view each context point
as a token and utilize transformer architecture to effectively approximate functions. Additionally,
the Versatile Neural Process (VNP) (Guo et al., 2023) employs attentive neural processes for neural
field generalization but does not consider the information misalignment between the 2D context set
and the 3D target points. The hierarchical structure in VNP is more sequential than global-to-local.
Conversely, PONP (Gu et al., 2023) is agnostic to neural-field specifics and concentrates on the neural
process perspective. In this work, we consider a hierarchical neural process to model the structure
information of the scene.

3 METHODOLOGY

Notations. We denote 3D world coordinates by p = («, y, z) and a camera viewing direction by d =
(0, ¢). Each point in 3D space have its color ¢(p, d), which depends on the location p and viewing
direction d. Points also have a density value o(p) that encodes opacity. We represent coordinates
and view direction together as x = {p, d}, color and density together as y(p,d) = {c(p,d), o(p)}.
When observing a 3D object from multiple locations, we denote all 3D points as X = {x, }}\_,
and their colors and densities as Y = {y, }\_,. Assuming a ray r = (o, d) starting from the
camera origin o and along direction d, we sample P points along the ray, with x* = {x‘”}P 1 and

corresponding colors and densities y* = {y*} - ;. Further, we denote the observations X and Y as:
the set of camera rays X = {%X,, = r,}_, and the projected 2D pixels from the rays Y = v},

Background on Neural Radiance Fields.

We formally describe Neural Radiance Field  3p pointsinaray: x Camera ray:
(NeRF) (Mildenhall et al., 2021; Arandjelovi¢ 3D colors and densities: ¥*  gengering 2D Pixel on image:
& Zisserman, 2021) as a continuous function )
fNerF @ X +—y, which maps 3D world co-
ordinates p and viewing directions d to color
and density values y. That is, a NeRF func-
tion, fnerr, 1S @ neural network-based function
that represents the whole 3D object (e.g., a car
in Fig. 1) as coordinates to color and density
mappings. Learning a NeRF function of a 3D
object is an inverse problem where we only have
indirect observations of arbitrary 2D views of Figure 1: Complete rendering from 3D points to
the 3D object, and we want to infer the entire a 2D pixel.

3D object’s geometry and appearance. With the

NeRF function, given any camera pose, we can render a view on the corresponding 2D image plane
by marching rays and using the corresponding colors and densities at the 3D points along the rays.
Specifically, given a set of rays r with view directions d, we obtain a corresponding 2D image. The
integration along each ray corresponds to a specific pixel on the 2D image using the volume rendering
technique described in Kajiya & Von Herzen (1984), which is also illustrated in Fig. 1. Details about
the integration are given in Appendix A.

<M

3.1 PROBABILISTIC NERF GENERALIZATION

Neural Radiance Fields are normally considered as an optimization routine in a deterministic set-
ting (Mildenhall et al., 2021; Barron et al., 2021), whereby the function fx.rr fits specifically to
the available observations (akin to “overfitting” training data). To allow for learning, however, we
formulate a probabilistic Neural Radiance Field with the following factorization:

p(Y[X) o p(Y[Y, X) p(Y|X) p(X|X). (1
—_——— —— ——
Integration ~ NeRF Model Sampling

The generation process of this probabilistic formulation is as follows. We first start from (or sample)
a set of rays X. Conditioning on these rays, we sample 3D points in space X’X Then, we map these
3D points into their colors and density values with the NeRF function, Y = fnerr(X). Last, we



Under review as a conference paper at ICLR 2025

| Geometric Bases Hierarchical Modulation context-generated

target-generated

|
|
! ! (trainin
\ g-only)

A — p(20) —> p(2) :
o l modulation i l
Xe, Yo |
2 s s oy
g g g (hy,\w’) |
— L= I o} ol

»nYr I8 % g 2 .+ .~ Tintegration ‘
= Y; I
o E .5 T |

—® 5 S 2

|
P |
H —{ q(zo) > a(z) ) posterior |
o :
Fm _ D1 (p(20)[la(20)) Dxr(p(zr)la(zr)) |
|
|

2D 2D

Figure 2: Illustration of our Geometric Neural Processes. We cast radiance field generalization as
a probabilistic modeling problem. Specifically, we first construct geometric bases B¢ in 3D space
from the 2D context sets X, Y ¢ to model the 3D NeRF function (Section 3.2). We then infer the
NeRF function by modulating a shared MLP through hierarchical latent variables z,, z,, and make
predictions by the modulated MLP (Section 3.3). The posterior distributions of the latent variables
are inferred from the target sets X1, Y, which supervises the priors during training (Section 3.4).

sample the 2D pixels of the viewing image that corresponds to the 3D ray ?|Y, X with a probabilistic
process. This corresponds to integrating colors and densities 'Y along the ray on locations X.

The probabilistic model in Eq. (1) is for a single 3D object, thus requiring optimizing a function
fnerr afresh for every new object, which is time-consuming. For NeRF generalization, we accelerate
learning and improve generalization by amortizing the probabilistic model over multiple objects,
obtaining per-object reconstructions by conditioning on context sets Xc, Y. For clarity, we use
(+)¢ to indicate context sets with a few new observations for a new object, while (), indicates target
sets containing 3D points or camera rays from novel views of the same object. Thus, we formulate a
probabilistic NeRF for generalization as:

p(Yr|Xr, Xe,Yo) « p(Yr|Yr, Xr) p(Yr|Xr, Xe, Yo) p(Xr|Xr) - )

Integration NeRF Generalization Sampling

As this paper focuses on generalization with new 3D objects, we keep the same sampling and
integrating processes as in Eq. (1). We turn our attention to the modeling of the predictive distribution
p(Y7|Xr,Xc,Ye) in the generalization step, which implies inferring the NeRF function. It is
worth mentioning that the predictive distribution in 3D space is conditioned on 2D context pixels
with their ray {X ¢, Y} and 3D target points X, which is challenging due to potential information
misalignment. Thus, we need strong inductive biases with 3D structure information to ensure that 2D
and 3D conditional information is fused reliably.

3.2 GEOMETRIC BASES

To mitigate the information misalignment between 2D context views and 3D target points, we

introduce geometric bases B¢ = {b; }£,, which induces prior structure to the context set {Xc, Ye)
geometrically. M is the number of geometric bases.

Each geometric basis consists of a Gaussian distribution in the 3D point space and a semantic repre-
sentation, i.e., b; = {N(u;, X;); w; }, where p; and 3; are the mean and covariance matrix of i-th
Gaussian in 3D space, and w; is its corresponding latent representation. Intuitively, the mixture of
all 3D Gaussian distributions implies the structure of the object, while w; stores the corresponding
semantic information. In practice, we use a transformer-based encoder to learn the Gaussian distribu-
tions and representations from the context sets, i.e., {(u;, s, w;)} = Encoder[X¢, Y¢|. Detailed
architecture of the encoder is provided in Appendix B.1.
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With the geometric bases B¢, we review the predictive distribution from p(Yr|Xr, )~(C, ?C) to
p(Y7|Xr,B¢). By inferring the function distribution p(fnerr), wWe reformulate the predictive
distribution as:

p(Y7|X7p,Beo) = /p(YT‘fNeRF;XT)p(fNeRF‘XTaBC)dieRFz 3)

where p( fnere| X1, B¢) is the prior distribution of the NeRF function, and p(Y 7| fxerr, X71) is
the likelihood term. Note that the prior distribution of the NeRF function is conditioned on the
target points X7 and the geometric bases B¢. Thus, the prior distribution is data-dependent on the
target inputs, yielding a better generalization on novel target views of new objects. Moreover, since
B is constructed with continuous Gaussian distributions in the 3D space, the geometric bases can
enrich the locality and semantic information of each discrete target point, enhancing the capture of
high-frequency details (Chen et al., 2023b; 2022; Miiller et al., 2022).

3.3 GEOMETRIC NEURAL PROCESSES WITH HIERARCHICAL LATENT VARIABLES

With the geometric bases, we propose Geometric Neural Processes (GeomNP) by inferring the NeRF
function distribution p( fxerr| X7, B¢) in a probabilistic way. Based on the probabilistic NeRF
generalization in Eq. (2), we introduce hierarchical latent variables to encode various spatial-specific
information into p( fxerr| X7, B¢ ), improving the generalization ability in different spatial levels.
Since all rays are independent of each other, we decompose the predictive distribution in Eq. (3) as:

N
p(YT|XT7BC) = H p(Y;n X;"na BC)v (4)
n=1

where the target input X consists of N x P location points {x7." }2_; for N rays.

Further, we develop a hierarchical Bayes frame-
work for GeomNP to accommodate the data
structure of the target input X1 in Eq. (4). We
introduce an object-specific latent variable z,
and N individual ray-specific latent variables
{z"}N_, to represent the randomness of fxerr.

Within the hierarchical Bayes framework, z,
encodes the entire object information from all
target inputs and the geometric bases { X1, B¢}
in the global level; while every z;* encodes ray-
specific information from {x7.", B¢} in the lo-
cal level, which is also conditioned on the global
latent variable z,. The hierarchical architecture
allows the model to exploit the structure infor-
mation from the geometric bases B in different
levels, improving the model’s expressiveness ability. By introducing the hierarchical latent variables
in Eq. (4), we model GeomNP as:

Object-specific

Figure 3: Graphical model for the proposed geo-
metric neural processes.

N
p(¥rlXr,Bo) = [ TL{ [ oo i Bo, ol 2)p(at 20,57 Be)dal bo(a| X, Be)dzn, (5
n=1

where p(y7"|x7", Bc, 2o, z..) denotes the ray-specific likelihood term. In this term, we use the

hierarchical latent variables {z,, zﬁ} to modulate a ray-specific NeRF function fnerr for prediction,
as shown in Fig. 2. Hence, fxerr can explore global information of the entire object and local
information of each specific ray, leading to better generalization ability on new scenes and new views.
A graphical model of our method is provided in Fig. 3.

In the modeling of GeomNP, the prior distribution of each hierarchical latent variable is conditioned
on the geometric bases and target input. We first represent each target location by integrating the
geometric bases, i.e., < x7.,, Bc >, which aggregates the relevant locality and semantic information
for the given input. Since B¢ contains M Gaussians, we employ a Gaussian radial basis function
in Eq. (6) between each target input x7. and each geometric basis b; to aggregate the structural
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and semantic information to the 3D location representation. Thus, we obtain the 3D location
representation as follows:

M
1 — n
< xj,Bo >=MLe | 3 exp(—5 (xh — ) I (o — i) - wi. (©)

where MLP|[-] is a learnable neural network. With the location representation < x%., B¢ >, we next
infer each latent variable hierarchically, in object and ray levels.

Object-specific Latent Variable. The distribution of the object-specific latent variable z,, is obtained
by aggregating all location representations:

N
[uo,ao}:MLP[NiPZZ<x’TL,BC>], @)

n=1 r

where we assume p(z,|B¢, Xr) is a standard Gaussian distribution and generate its mean p,, and
variance o, by a MLP. Thus, our model captures objective-specific uncertainty in the NeRF function.

Ray-specific Latent Variable. To generate the distribution of the ray-specific latent variable, we first
average the location representations ray-wisely. We then obtain the ray-specific latent variable by
aggregating the averaged location representation and the object latent variable through a lightweight
transformer. We formulate the inference of the ray-specific latent variable as:

[4r,0.] = Transformer [MLP Z < x},Be > } 8)

where Z,, is a sample from the prior distribution p(z,|Xr, B¢). Similar to the object-specific latent
variable, we also assume the distribution p(z!|z,, x7", B¢) is a mean-field Gaussian distribution
with the mean .. and variance o,.. We provide more details of the latent variables in Appendix B.2.

NeRF Function Modulation. With the hierarchical latent variables {z,, z" }, we modulate a neural
network for a 3D object in both object-specific and ray-specific levels. Spec1ﬁcally, the modulation
of each layer is achieved by scaling its weight matrix with a style vector (Guo et al., 2023). The
object-specific latent variable z, and ray-specific latent variable z.' are taken as style vectors of the
low-level layers and high-level layers, respectively. The prediction distribution p(Y|X7, B¢) are
finally obtained by passing each location representation through the modulated neural network for
the NeRF function. More details are provided in Appendix B.3.

3.4 EMPIRICAL OBJECTIVE

Evidence Lower Bound. To optimize the proposed GeomNP, we apply variational inference (Garnelo
et al., 2018b) and derive the evidence lower bound (ELBO) as:

N
1ng<YT|)(T7 BC) > IEq(zo|BT,XT){ Z IEq(z:&|zo,x§4",BT) Ing(YT |XT yZoy Z?)

— Dxuq(z; |20, x7", B )| |p(2;' |20, x7" ,Bc)]} — Dxi[q(2o|Br, Xr)||p(20[Be, X)),

©))
where gp,4(Zo, {z:} Y 1 | X7, Br) = 1Y (27|20, x3:", Br)q(2,|B7, Xr) is the involved varia-
tional posterior for the hierarchical latent variables. B is the geometric bases constructed from
the target sets { X, Y}, which are only accessible during training. The variational posteriors are
inferred from the target sets during training, which introduces more information on the object. The
prior distributions are supervised by the variational posterior using Kullback-Leibler (KL) divergence,
learning to model more object information with limited context data and generalize to new scenes.
Detailed derivations are provided in Appendix C.

For the geometric bases B¢, we regularize the spatial shape of the context geometric bases to be
closer to that of the target one B by introducing a KL divergence. Therefore, given the above ELBO,
our objective function consists of three parts: a reconstruction loss (MSE loss), KL divergences for
hierarchical latent variables, and a KL divergence for the geometric bases. The empirical objective
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Table 1: Qualitative comparison (PSNR) on novel view synthesis of ShapeNet objects. GeomNP
consistently outperforms baselines across all categories with both 1-view and 2-view context.

Method Views Car Lamps Chairs Average
Learn Init (Tancik et al., 2021) (CVPR21) 25 22.80 22.35 18.85 21.33

Tran-INR (Chen & Wang, 2022) (ECCV22) 1 23.78 2276  19.66 22.07
NeRF-VAE (Kosiorek et al., 2021) ICML21) 1 21.79 2158 17.15 20.17
PONP (Gu et al., 2023) (ICCV23) 1 24.17 22778 1948 22.14
VNP (Guo et al., 2023) (ICLR 23) 1 2421 2410 19.54 22.62
GeomNP (Ours) 1 2513 2459 20.74 23.49

2

2

2

Tran-INR (Chen & Wang, 2022) (ECCV22) 2545 2311 21.13 23.27
PONP (Gu et al., 2023) (ICCV23) 2598 2328 1948 2291
GeomNP (Ours) 26.39 2532 22.68 24.80

for the proposed GeomNP is formulated as:
£GeomNP = ||y - yl”% +a- (DKL[p(ZO|BC)|q(Z0|BT)]
+ DxL[p(2r|20, Be)|q(2r |20, Br)]) + 8- Dx[Be, By,

where 7/ is the prediction. « and 3 are hyperparameters to balance the three parts of the objective.
The KL divergence on B¢, B is to align the spatial location and the shape of two sets of bases.

(10)

4 EXPERIMENTS

Baselines. We compare GeomNP with three recent probabilistic INR generalization methods: NeRF-
VAE (Kosiorek et al., 2021), PONP (Gu et al., 2023) and VNP (Guo et al., 2023) on ShapeNet novel
view synthesis and image regression tasks. PONP (Gu et al., 2023) and VNP (Guo et al., 2023) also
rely on Neural Processes, however, they neglect structure information and the probabilistic interaction
between 3D functions and 2D partial observations. Additionally, we choose two previous well-known
deterministic INR generalization approaches, Learnlnit (Tancik et al., 2021) and TransINR (Chen &
Wang, 2022) as our baselines. Moreover, to demonstrate the flexibility of our method and its ability
to handle real-world scenes, we integrate GeomNP with pixelNeRF (Yu et al., 2021) and conduct
experiments on the DTU dataset (Aanzs et al., 2016).

4.1 NOVEL VIEW SYNTHESIS

ShapeNet Setup. We perform the 3D novel view synthesis task on ShapeNet (Chang et al., 2015)
objects. Following previous works’ setup (Tancik et al., 2021), the dataset consists of objects from
three ShapeNet categories: chairs, cars, and lamps. For each 3D object, 25 views of size 128 x 128
images are generated from viewpoints randomly selected on a sphere. The objects in each category
are divided into training and testing sets, with each training object consisting of 25 views with known
camera poses. At test time, a random input view is sampled to evaluate the performance of the novel
view synthesis. Following the setting of previous methods (Chen & Wang, 2022), we focus on the
single-view (1-shot) and 2-view (2-shot) versions of the task, where one or two images with their
corresponding camera rays are provided as the context.

Implementation Details. Our context input is the concatenation of a set of camera rays and the
corresponding image pixels from one or two views, which are then split into different visual tokens.
We use the same patch size 8 x 8 as TransINR (Chen & Wang, 2022) and VNP (Guo et al., 2023),
resulting in 256 tokens. A linear layer and a self-attention module project each token into a 512-
dimensional vector. Based on the 256 tokens, we predict 256 geometric bases using two MLP
modules: one for 3D Gaussian distribution parameters and the other for the latent representation (32
dimensions). More details are given in Appendix B.1. We obtain the object-specific and ray-specific
modulating vectors (both are 512 dimensions) based on the geometric base. Our NeRF function
consists of four layers, including two modulated layers and two shared layers.

Quantitative Results. The quantitative comparison in terms of Peak Signal-to-Noise Ratio (PSNR)
is presented in Table 1. The proposed GeomNP consistently outperforms all other baselines across
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Figure 4: Qualitative results of the proposed GeomNP on novel view synthesis of ShapeNet
objects. Both 1-view (top) and 2-view (bottom) context results are presented.

Context pixelNeRF Ours

Figure 5: Novel view synthesis results with 1-view context on the DTU dataset. Geom/NP has a
more realistic rendering quality than pixeINeRF (Yu et al., 2021) for novel views with extremely
limited context views (1-view).

all three categories by a significant margin. On average, GeomNP exceeds the previous NP-based
method, VNP (Guo et al., 2023), by 0.87 PSNR, indicating that the proposed geometric bases and
probabilistic hierarchical modulation result in better generalization ability. Moreover, with two views
of context information, GeomNP’s performance improves significantly by around 1 PSNR. This
improvement is expected, as the richer geometric bases information allows for a better representation
of the 3D space, leading to improved object-specific and ray-specific latent variables.

Qualitative Results. In Fig. 4, we visualize the results of GeomNP on novel view synthesis of
ShapeNet objects. GeomNP can infer object-specific radiance fields and render high-quality 2D
images of the objects from novel camera views, even with only 1 or 2 views as context. More results
and comparisons with other VNP are provided in Appendix F.

Comparison on DTU. To ensure a fair compar- Table 2: Comparison on the DTU MVS
ison with pixelNeRF (Yu et al., 2021) using the  dataset. Training with 1-view context and test-
same encoder and NeRF network architecture, we  ing with both 1-view and 3-view context images.
incorporate our probabilistic framework into pix- Integrating GeomNP into the pixelNeRF frame-
eINeRF. We conducted experiments on real-world  work leads to improvement in terms of both
scenes from the DTU MVS dataset (Aanzs et al., PSNR and SSIM.

2016). To explore the capability of dealing with

extremely limited context information, we train Method PSNR _ SSIM
both models with 1-view context and test the 1-

view and 3-view results in terms of PSNR and  |_jo,y PiX€INeRF 15.51 051

SSIM (Wang et al., 2004) metrics. Both qual- GeomNP (Ours) 1589  0.58

itative results in Table 2 and qualitative results v pixelNeRF 15.80 056
-view

in Fig. 5 demonstrate our probabilistic modeling
can improve the existing methods. Notably, even
when trained with a 1-view context image and
tested with 3-view context images, our method significantly outperforms pixelNeRF, demonstrating
that our probabilistic framework effectively utilizes limited observations.

GeomNP (Ours) 16.99 0.61
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CelebA Prediction

Learned Init (Tancik et al., 2021) ~ 30.37
TransINR (Chen & Wang, 2022) 31.96
GeomNP (Ours) 33.41

(a) Quantitative results. GeomNP outperforms (b) Visualizations on CelebA (left) and Imagenette (right),
baseline methods consistently on both datasets. respectively.

Figure 6: Quantitative results and visualizations of image regression on CelebA and Imagenette.

Context Prediction GT Context Prediction GT

Figure 7: Image completion visualization on CelebA using 10% (left) and 20% (right) context.

4.2 IMAGE REGRESSION

Setup. Our method is flexible to different signals and can also be seamlessly applied to 2D signals.
Here, we evaluate our method on the image regression task, a common task for evaluating INRs’
capacity of representing a signal (Tancik et al., 2021; Sitzmann et al., 2020b). We employ two
real-world image datasets as used in previous works (Chen & Wang, 2022; Tancik et al., 2021; Gu
et al., 2023). The CelebA dataset (Liu et al., 2015) encompasses approximately 202,000 images of
celebrities, partitioned into training (162,000 images), validation (20,000 images), and test (20,000
images) sets. The Imagenette dataset (Howard, 2020), a curated subset comprising 10 classes from
the 1,000 classes in ImageNet (Deng et al., 2009), consists of roughly 9,000 training images and
4,000 testing images. In order to compare with previous methods, we conduct image regression
experiments. The context set is an image and the task is to learn an implicit function that regresses
the image pixels well.

Implementation Details. Following TransINR (Chen & Wang, 2022), we resize each image into
178 x 178, and use patch size 9 for the tokenizer. The self-attention module remains the same as the
one in the NeRF experiments (Sec. 4.1). For the Gaussian bases, we predict the 2D Gaussians instead
of the 3D. The hierarchical latent variables are inferred in image-level and pixel-level.

Results. The quantitative comparison of GeomNP for representing the 2D image signals is presented
in Table 6a. GeomNP outperforms the baseline methods on both CelebA and Imagenette datasets
significantly, showing better generalization ability and representation capacity than baselines. Fig. 6b
shows the ability of GeomNP to recover the high-frequency details for image regression.

Image Completion Visualization. We also conduct experiments of GeomNP on image completion
(also called image inpainting), which is a more challenging variant of image regression. Essentially,
only part of the pixels are given as context, while the INR functions are required to complete the
full image. Visualizations in Fig. 7 demonstrate the generalization ability of our method to recover
realistic images with fine details based on very limited context (10% — 20% pixels).

4.3 ABLATIONS

Sensitivity to Number of Geometric Bases. Table 3: Sensitivity to the number of geometric
We further analyze the sensitivity to the num- bases on NeRF and image regression.

ber of geometric bases in the CelebA image
reggessiol? and Lgmps Ne}IIQF tasl;s. Ver further Image Regression NeRF
analyze the sensitivity to the number of geomet-

ric bases in the CelebA image regression and # Bases 49 169 484 100 250
Lamps NeRF tasks. In image regression, we =~ PSNR(T) 28.59 3374 4424 24.31 24.59
resize the images to 64 x 64 and use different

patch sizes to construct 49, 169, and 484 bases. In the NeRF task, we keep the same setup as in Sec.
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Original Image Uncertainty Map Original Image Uncertainty Map

Figure 8: Uncertainty Map of the predictions. Edges of objects have higher uncertainty since it is
more challenging for the model to capture the detailed, sharp changes at the edges.

4.1 and construct 100, 250 bases. The results are provided in Table 3. With more bases, Geom/NP
achieves better performance consistently, indicating that large numbers of geometric Gaussian bases
further enrich the structure information and lead to stronger predictive functions. We choose the
number of bases by balancing the performance and computational costs.

Importance of Hierarchical Latent Variables. To demonstrate the effectiveness of the hierarchical
nature of GeomNP with object-specific and ray-specific latent variables for modulation, we performed
an ablation study on a subset of the Lamps dataset for fast evaluation. As shown in the last four
rows in Table 4, either object-specific or ray-specific latent variable improves the performance of
neural processes, indicating the effectiveness of the specific function modulation. With both z, and
z,, the method performs best, demonstrating the importance of the hierarchical modulation by latent
variables. In addition, the hierarchical modulation also performs well without the geometric bases.

Importance of Geometric Bases. We also ex- Table 4: Importance of geometric bases and hi-
plore the effectiveness of the proposed geomet- erarchical latent variables on a subset of the
ric bases. As shown in Table 4 (rows 1 and 5), Lamps scene synthesis (PSNR). z, and z, are
with the geometric bases, GeomNP performs  object-specific variable and ray-specific variable,

clearly better. This indicates the importance of  respectively. v/ and X denote whether the compo-
the 3D structure information modeled in the ge- nent joins the pipeline or not.

ometric bases, which provide specific inferences

of the INR function in different spatial levels.

Moreover, the bases perform well without hi- Bc  z, z PSNR()
erarchical latent variables, demonstrating their X  / 23.06
ability to construct 3D information and reduce 4 X X 25.98
misalignment between 2D and 3D spaces. 4 OOX 26.24
Uncertainty Visualization. As a probabilistic v/ X v 26.29
framework, our method can provide uncertainty v o/ 26.48

estimation. To obtain the uncertainty map, we
sample ten times from the predicted prior distribution to generate corresponding images and then use
the variance map to represent the uncertainty. As shown in Fig. 8, high uncertainty is concentrated
around the edges, which is expected, as capturing detailed, sharp changes at the edges is more
challenging for the model.

5 CONCLUSION

In this paper, we addressed the challenge of INR generalization, enabling models to quickly adapt
to new signals with limited observations. For radiance field generalization, we proposed Geometric
Neural Processes (GeomNP), a probabilistic neural radiance field that explicitly captures uncertainty.
By formulating INR generalization probabilistically, GeomNP incorporates uncertainty and directly
infers INR function distributions from limited context images. To mitigate the information alignment
between 2D context images and 3D discrete points, we introduce geometric bases, which learn to
provide structured geometric information of the 3D scene. Moreover, our hierarchical neural process
modeling enables both object-specific and ray-specific modulation of the INR function. In practice,
the proposed method also seamlessly applies to 2D INR generalization problems.

10
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REPRODUCIBILITY STATEMENT

We have provided details to ensure the reproducibility of our work. Comprehensive descriptions of
the experimental setup, including model configurations, hyperparameter settings, and evaluation pro-
cedures, are thoroughly documented in the main text and supplementary materials. To ensure clarity
in the theoretical aspects, complete proofs of our claims are provided in the appendix. Additionally,
we will release our code upon acceptance.
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A NEURAL RADIANCE FIELD RENDERING

In this section, we outline the rendering function of NeRF (Mildenhall et al., 2021). A 5D neural
radiance field represents a scene by specifying the volume density and the directional radiance emitted
at every point in space. NeRF calculates the color of any ray traversing the scene based on principles
from classical volume rendering (Kajiya & Von Herzen, 1984). The volume density o(x) quantifies
the differential likelihood of a ray terminating at an infinitesimal particle located at x. The anticipated
color C(r) of a camera ray r(t) = o + td, within the bounds ¢,, and ¢, is determined as follows:

C(r)= /ttf T(t)o(r(t))c(r(t),d)dt, where T(t)=exp < /tt J(r(s))ds) . 3an

n

Here, the function T'(¢) represents the accumulated transmittance along the ray from ¢,, to ¢, which is
the probability that the ray travels from ¢,, to ¢ without encountering any other particles. To render a
view from our continuous neural radiance field, we need to compute this integral C'(r) for a camera
ray traced through each pixel of the desired virtual camera.

B IMPLEMENTATION DETAILS

B.1 GAUSSIAN CONSTRUCTION

As introduced in Sec. 3.2, we introduce geometric bases B¢ to structure the context variables

geometrically. B¢ are geometric bases (Gaussians) inferred from the context views {)NCC, ?C} with
3D structure information, i.e., b; = {N (1, 3;);w; b

Be = {b;}}1, b = {N (i, Ti); wi}, (12)
i, 5 = At (Xe, Yo, att (Xe, Yo, (13)
w; = Att(ic,?c), (14)

where M is the number of the Gaussian bases. M€R3 is the Gaussian center, ¥ € R3*3 is the
covariance matrix, and w € R?5 is the corresponding d z-dimension semantic representation. In our
implementation, we choose dp as 32. Att is a self-attention module. Specifically, given the context
set [X;Y] € RAXWX(3+3+3) the visual self-attention module, At t, first produces a M x D tokens
with M is the number of visual tokens and D is the hidden dimension. The number of Gaussians we
use equals the number of tokens M. Then, we use one MLP with 2 linear layers to map the tokens into
a 10-dimensional vector, which includes 3-dimensional Gaussian centers, a 3-dimensional vector for
constructing the scaling matrix, and a 4-dimensional vector for quaternion parameters of the rotation
matrix. Both the scaling matrix and rotation matrix are used to build the 3 x 3 covariance matrix.
This procedure is similar to Gaussian construction in the 3D Gaussian Splatting (Kerbl et al., 2023).
Another MLP estimates the latent representation of each Gaussian basis, using a 32-dimensional
vector for each Gaussian basis.

The covariance matrix is obtained by:
¥ = RSSTRT, (15)

where R € R3*3 is the rotation matrix, and S € R? is the scaling matrix.

B.2 HIERARCHICAL LATENT VARIABLES

At the object level, the distribution of an object-specific latent variable z,, is obtained by aggregating
all location representations from (B¢, Xr). We assume p(z,|B¢, X1 ) follows a standard Gaussian
distribution and generate its mean p, and variance o, using MLPs. We sample an object-specific
modulation vector, Z,, from its prior distribution p(z,| X7, B¢).

Similarly, as shown in Fig. 9, we aggregate the information per ray using B¢, which is then fed into
a Transformer along with z, to predict the latent variable z,. with mean p,. and o, for each ray.
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Figure 9: Using transformer encoder to generate ray-specific latent variable z...

B.3 MODULATION

The latent variables for modulating the MLP are represented as [z,;z.]. Our approach to the
modulated MLP layer follows the style modulation techniques described in (Karras et al., 2020;
Guo et al., 2023). Specifically, we consider the weights of an MLP layer (or 1x1 convolution) as
W e Rnxdou wwhere dj, and doy are the input and output dimensions respectively, and w;; is the
element at the ¢-th row and j-th column of W.

To generate the style vector s € R%, we pass the latent variable z through two MLP layers. Each

element s; of the style vector s is then used to modulate the corresponding parameter in .
!

w;;

where w;; and w; ; denote the original and modulated weights, respectively.

= 8; * Wiy, j:]-w“adout; (16)

The modulated weights are normalized to preserve training stability,

w/

w// _# .:1,...,dout~ (17)

ij — y J
\/Ziwnge

Algorithm 1 Modulation Layer

Require: Latent variable z, weight matrix T € R%n X dous

Ensure: Modulated and normalized weight matrix W
Compute style vector:

s + MLP, (MLPl(z))

Modulate weights:

W'« diag(s) x W

Normalize modulated weights:

For each column j in W':

din
0j </ Zi:l(Wi/j)2 +e€
Normalize column j of W': W, <~ W/, /o;
return W'

W d Uk

C DERIVATION OF EVIDENCE LOWER BOUND

The propose GeomNP is formulated as:

N
p(¥riXr,Bo) = [ TT{ [0y b Bo,a 20 00" 20,53 Be)dal bp(aa | X, Bz,
n=1
18)
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where p(z,|B¢, Xr) and p(z!|z,,x7", B¢) denote prior distributions of a object-specific and each
ray-specific latent variables, respectively. Then, the evidence lower bound is derived as follows.

log p(Y7|X71,Bco)

N
:log/ H {/p(y;’ﬂxgn’zo,zf)p(zﬂzo,x?",Bc)dzf}p(zo|Bc,XT)dzo
n=1

1 / Al {/ ( rn|_r,n n) ( n| r.n g )q(z?\zo,xgl",BT)d n}
= lo, II X, 20, 2 Z, |Zo,Xp Z
g 11 P\Yr T 052y )P\Zy. |Zos X C q(z?\zo,X?n,BT) r
q(2o|Br, Xr)

—————"dz,
q(zo|BT7XT7)

P(20|Be, X7)

al rmn|_r.mn n n r.n Q(Z77~L|Z07 X?n; BT) n
2 EQ(ZG|BT7XT){ Zlog p(yT |XT 7Z07Zr)p(ZT‘Zo;XT 7BC)(](ZQ|ZO X;’n BT)dZT}
i=1 ’ )

— Dxw(q(20[Br, X1, )||p(2,|Bc, X))

r

N
r7 )
> Eq(ZG|BT7X—T){ Z E‘Z(zmzo,x;n,BT) lng(yTn|XTn7 Zo, Z?)
n=1

— Dxlq(z][20, 7", B)|[p(2;! |20, X7", Bc)]} — Dx[g(20|Br, X7)||p(20[Bos X7)],
, (19)
where g, (20, {22} | X7, Br) = q(2"|20,x7", B1)q(2,|B7, X7) is the variational posterior of
the hierarchical latent variables.

D MORE RELATED WORK

Generalizable Neural Radiance Fields (NeRF) Advancements in neural radiance fields have
focused on improving generalization across diverse scenes and objects. Wang et al. (2022) propose an
attention-based NeRF architecture, demonstrating enhanced capabilities in capturing complex scene
geometries by focusing on informative regions. Suhail et al. (2022) introduce a generalizable patch-
based neural rendering approach, enabling models to adapt to new scenes without retraining. Xu et al.
(2022) present Point-NeRF, leveraging point-based representations for efficient scene modeling and
scalability. Wang et al. (2024) further enhance point-based methods by incorporating visibility and
feature augmentation to improve robustness and generalization. Liu et al. (2024) propose a geometry-
aware reconstruction with fusion-refined rendering for generalizable NeRFs, improving geometric
consistency and visual fidelity. Recently, the Large Reconstruction Model (LRM) (Hong et al., 2023)
has drawn attention. It aims for single-image to 3D reconstruction, emphasizing scalability and
handling of large datasets.

Gaussian Splatting-based Methods Gaussian splatting (Kerbl et al., 2023) has emerged as an
effective technique for efficient 3D reconstruction from sparse views. Szymanowicz et al. (2024)
propose Splatter Image for ultra-fast single-view 3D reconstruction. Charatan et al. (2024) introduce
pixelsplat, utilizing 3D Gaussian splats from image pairs for scalable generalizable reconstruction.
Chen et al. (2025) present MVSplat, focusing on efficient Gaussian splatting from sparse multi-
view images. Our approach can be a complementary module for these methods by introducing a
probabilistic neural processing scheme to fully leverage the observation.

Diffusion-based 3D Reconstruction Integrating diffusion models into 3D reconstruction has
shown promise in handling uncertainty and generating high-quality results. Miiller et al. (2023)
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introduce DiffRF, a rendering-guided diffusion model for 3D radiance fields. Tewari et al. (2023)
explore solving stochastic inverse problems without direct supervision using diffusion with forward
models. Liu et al. (2023) propose Zero-1-to-3, a zero-shot method for generating 3D objects from a
single image without training on 3D data, utilizing diffusion models. Shi et al. (2023a) introduce
Zerol23++, generating consistent multi-view images from a single input image using diffusion-based
techniques. Shi et al. (2023b) present MVDream, which uses multi-view diffusion for 3D generation,
enhancing the consistency and quality of reconstructed models.

E IMPLEMENTATION DETAILS

We train all our models with PyTorch. Adam optimizer is used with a learning rate of 1e — 4. For
NeRF-related experiments, we follow the baselines (Chen & Wang, 2022; Guo et al., 2023) to train
the model for 1000 epochs. All experiments are conducted on four NVIDIA A5000 GPUs. For the
hyper-parameters « and (3, we simply set them as 0.001.

Model Complexity The comparison of the number of parameters is presented in Table. 5. Our
method, GeomNP, utilizes fewer parameters than the baseline, VNP, while achieving better perfor-
mance on the ShapeNet Car dataset in terms of PSNR.

Table 5: Comparison of the number of parameters and PSNR on the ShapeNet Car dataset.

Method # Parameters PSNR

VNP 34.3M 24.21
GeomNP 24.0M 25.13

Integration with PixeINeRF To integrate our method into PixeINeRF, we utilize the same feature
extractor and NeRF architecture. Specifically, we employ a pre-trained ResNet to extract features
from the observed images. From the latent space of the feature encoder, we predict geometric bases,
which are used to re-represent each 3D point in a higher-dimensional space. These re-represented
point features are aggregated into latent variables, which are then used to modulate the first two input
MLP layers of PixeINeRF’s NeRF network. During training, we align the latent variables derived
from the context images with those from the target views to ensure consistency.

F MORE EXPERIMENTAL RESULTS

In this section, we demonstrate more experimental results on the novel view synthesis task on
ShapeNet in Fig 10, comparison with VNP Guo et al. (2023) in Fig. 11, and image regression on the
Imagenette dataset in Fig. 12. The proposed method is able to generate realistic novel view synthesis
and 2D images.

F.1 TRAINING TIME COMPARISON

As illustrated in Fig.13, with the same training time, our method (GeomNP) demonstrates faster
convergence and higher final PSNR compared to the baseline (VNP).

F.2 QUALITATIVE ABLATION OF THE HIERARCHICAL LATENT VARIABLES

In this section, we perform a qualitative ablation study on the hierarchical latent variables. As
illustrated in Fig. 14, the absence of the global variable prevents the model from accurately predicting
the object’s outline, whereas the local variable captures fine-grained details. When both global and
local variables are incorporated, GeomNP successfully estimates the novel view with high accuracy.
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Figure 10: More NeRF results on novel view synthesis task on ShapeNet objects.
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Figure 11: Comparison between the proposed method and VNP on novel view synthesis task for
ShapeNet objects. Our method has a better rendering quality than VNP for novel views.
F.3 MORE MULTI-VIEW RECONSTRUCTION RESULTS

We integrate our method into GNT (Wang et al., 2022) framework and perform experiments on

the Drums class of the NeRF synthetic dataset. Qualitative comparisons of multi-view results are
presented in Fig. 15.
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Figure 12: More image regression results on the Imagenette dataset. Left: ground truth; Right:
prediction.
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Figure 13: Training time vs. PSNR on the ShapeNet Car dataset. Our method (GeomNP)
demonstrates faster convergence and higher final PSNR compared to the baseline (VNP).
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Figure 14: Qualitative ablation of the hierarchical latent variables (global and local variables).
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Figure 15: Qualitative comparisons of Multi-view results on the Drums class of the NeRF
synthetic dataset.
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